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1 Summary

This project has investigated the application of wavelet methods in spread spectruin communi-
cations. Usc of the wavclet transform as an alternative to the short-time Fourier transform and
quadratic time-frequency transforms {e.g., the Wigner-Ville distribution) for measuring critical pa-
rameters of intercepted slow {requency hopping comimunication sighals has been explored. The
wavelet transform was found to not offer significant advantages over Fourier methods in this ap-
plication because the sinusoidal analysis provided by the Vourier transform is well matched to the
piecewise-sinusoidal carriers used in frequency hopping signals. However, use of the wavelet trans-
form with sinusoidal wavelets offered an efficient multiresolution framework for precise measurement
of hopping times and frequencies. A hybrid wavelct-Fourier algorithm was developed to exploit this
feature.

A ncw approach to multiple-access spread spectrum comimunications was also developed under
this project. This approach employs crihogoral wavelse as symbols for encoding digital information
signals. Several users can transmit siinultancousiy in the same medium using channels defined by
wavelet scale in much the same way that chanuels are defined by frequency in traditional frequency
division multiple access. With appropriate choices of wavelct symbols, this approach has been shown
to provide spectral spreading that makes the transmitted signals robust with respect to detection,

interception, and jamming by typical methods.

2 Research Objectives
The main objectives for the rescarch under this cffort are sumrarized as follows:

1. Investigate the utility of the wavelet transform in cstimating the spreading function for inter-
cepted slow frequency hopping spread spectrum communication signals. ldentify advantages
and drawbacks of the wavelet transform compared to the short-time Fourier transform in this

application.

2. Develop wavelet-based approaches to multi-user spread spectrum communications. Consider
the design of wavelets that provide robustness of the transmitted signal to detection, intercep-

tion, and jamming.

The results obtained in pursuit of these objectives are described in the following two sections of

this report. For convenience in exposition, objective 2 is discussed first.




3 Research Results: Wavelet-Based Spread Spectrum

The purpose of this portion of the research effort was to introduce a new method of coding digital
communication signals on orthogonal symbols in such a way that several users can communicate
simultaneously using the same transmission medium. Such methods are known in the communica-
tions literature as code division multiple access (CDMA) schemes!. The two most popular CDMA
schemcs are frequency division multiplc access (FIDMA) and time division multiple access (TDMA).
In FDMA, orthogonality of the various users’ messages is achieved by separating them into cssen-
tially disjoint frequency bands while orthogonality of TDMA messages is obtained by constraining
them to occupy disjoint time intervals.

Though FDMA and TDMA offer advantages in simplicily, they are obviously not the only ways
to achieve orthogonality of transmitted message information. Other CDMA schemes were introduced
originally in the context of military communications, where they were used to provide robustness
with respect to detection, interception by unintended recceivers, and interference - including deliber-
ate interference (jamming) [20]. Morc recently the value of certain CDMA approaches in commercial
applications, including cellular telephony, has been pointed out and civilan CDMA has become a
topic of intcrest within the communications research community.

This research has developed a CDMA scheme called scale-division multiplc access (SDMA) thatis
based on the theory of wavelets. SDMA oflers much of the simplicity of FDMA while retaining many
of the desirable features of more complicated CDMA schemes, including robustness to detection,
interception, and jamming. In FDMA, bits are encoded on orthogonal symbols obtained by time
shifting and frequency shifting a single “mother” symbol ~ a truncated sine wave. SDMA encodes
bits on orthogonal symbols obtained by time shifting and dilating a single mother wavelet symbol,
which mnay be chosen from a fairly broad class of wavelets. 1t is the separation of the various uscrs’
messages into orthogonal channels at diffcrent dilations or “scales™ that suggests the name “scale
division multiple access”.

Closcly associated with the theory of wavclets is the concept of a frame, which generalizes the
notion of an orthonormal basis. The principle of SDMA coding has been shown to extend from
orthonormal wavclet bascs to wavelet frames.

'CDMA is interpreted in a broad sense herc, i.c. as coding on orthogonal or nearly orthogonal symbols.




3.1 Mathematical preliminaries

This short section reviews some mathemadtical concepts and introduces some notation and conven-
tions that will be used in explaining SDMA and in the subsequent discussion on demodulation of
intercepled frequency hiopping siguals.

3.1.1 Lebesgue spaces

Unless otherwise notled, the expression

/sj(t) dt

will denote the Lebesgue integral of the Lebesgue measurable function f : R — C over the Lebesgue

measurable set § ¢ K. lor 1 € p < o0, the p norm of the Lebesgue measurable function f: & — C

umﬁ(ﬂmmwy“_

If the integrals of two Lebesgue measurable functions f and g on cvery measurable set are equal,

is defined as

then f and g are said to be Lebesgue equivalent. This condition is identical to the requirement that
the Lebesgue measure of the set {t | f(t) # g(t)} is zero.

l'or p > 1, the Lebesgue space LY £ L*(Z) consists of equivalence classes of Lebesgue equivalent
functions f for which {[f{[, < oo. With addition and scalar multiplication defined in the obvious
ways, LP is a complex Banach space for all p. Furthermore, /.? is a complex Ililbert space with
inner product

mwéﬁﬂwwwz

Onc often writes “f € [7” to nean that the equivalence class of fis in LP.

The discrete Lebesgue space €7 £ ¢P(Z) consists of complex sequences ¢ = {ck | k € Z} for which

1/p
mm=(2nm) <%

k€7,

As with LP, €7 is a complex Banach space for all p and £? is a complex Hilbert space with inner

product

(c,d) 2 E cxd}

kez
Lebesgue spaces and norms over R™ and Z" are defined analogously.

Since this report is primarily concerned with analysis in 12, [|f]] will bc used to denote ||f|]2

when there is no danger of confusion.




3.1.2 Fourier transform

The Fourier transform of f € (L} N L?) is the function F{f} £ j : ® — T with values

flw) 2 /R Sy dt (1)

Lebesguc equivalent functions clearly have the same Fourier transform. Hence the operator F is weli
defined on £ N L2, It is clearly iinear.

Since L' 0 L? is dense in L?, the definition of F cxtends naturally to 2 mapping of L? onto L2
The particulars of this extension are given by Plancherel’s theorem [23). One consequence of this

extension is that, for functions f and g in L?,

(f,8) = 2n(f.9)
which obviously implies || f}|2 = 2| f]]2
If f € L?, the inverse Fourier transform of f is the function g : R — € defined by

o 1 ; 1wt
g(t) 2 5;/_f<w)e de. (2)

The function g is Lebesgue equivalent to f. Together with the preceding notes, this implics that
the Fourier transform defined by (1) extends to an isomorphism of L? onto L? which is isometric

except for the constant factor v2r.

3.1.3 Bandlimited and timelimited

In electrical engincering, it is common to regard L? functions as “signals” which are functions of
time. Then Fourier transform variable w is thus known as (angular) frequency.

A function f € L? is bandlimited if there is an 2 € R so that f(w) = 0 for w € (=2, ). On the
other hand, a function f € L? is timelimited if there js a T € R and a function g that is Lebesgue

equivalent to f such that g(t)=0fort e (-7,7).

3.1.4 Orthonormal bases of L?

If J is an index set, a set B 2 {¢; | j € J} of elements in L? is orthonormal if

1 j=k

(d',4>k)={ A
0 j#k

for all j and k in J.
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Scale m-1
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Figure 3: An example of encoding information on the Haar wavelet at different scales.

robustness with respect to detection, interference, and narrowband jamming. Design of wavelets for

SDMA applications is discussed in later sections.

3.3.2 Channel capacity and synchronization

It is evident from Figure 3 that transinitters using finer scales (lower m) will be able 1o transmit
more bits per unit time than those using coarser scales. This may be a fcature in some applications;
where it is not, time-division within the high-capacity channels could be used to equalize capacitics.

Expressions (4) and (5) assume that the transmitlers arve perfectly synchronized and the prop-
agation dclays fromn each transmitter to the receiver are identical. Orthogonality of the channels
is cornpromised if the received signals are not perfectly synchronized, as is evident in the cxample
of Figure 3. This problem is not restricted to SDMA. Rather, it is inherent in any system using
time-limited symbols [5]. Design of bandlimited wavclets for SDMA that achieve small channel

crosstalk under asynchronous operation is discussed later in this report.

10




3.3.3 Coding on frames

The idea of coding on orthogonal sets can be extended to coding on frames, the extension is most well
suited for transinission of large data blocks. l.et & = {¢, | j € J} beaframe and let & = {5, |J€ J}
be its dual. If b = {b, | j € J} is a collection of scalars corresponding to one information sequence
as in part A of this scction, the transmitter forms an analog signal s via the adjoint frame operator
T+ operating on b

s = T’b = Zbﬁ;’]
1€J

Without noise, the receiver obtains a corresponding sequence 3 = {3, | j € J} by applying the frame

operator 1" to the received signal s.
B=Ts or B;={(se;)

The map 71 : b — 3 is not generally injective, so that, an equivalence class By of scalar sequences
is mapped to the same 3. 3 is called t‘he typical element of Hg.

If different information sequence corresponds to different equivalent class, then the information
sequence is one to one corresponding to the tyvpical element. In another word, the receiver can
recover the information.

In the presence of additive noise z, the signal at recciver becomes s + z and the demodulation

operation yields
T&)=1(s+z2)= 73+ Tz
which generally does not correspond to the equivalence class of s. To combat this, a superclass can

be constructed which is the union of the equivalence classes whose typical elements are near in the

sensc of the norm (note T is continuous). This partitioning represents the decision mechanism.

3.4 Spectrum analysis of SDMA

The purpose of this section is to describe explicitly how the smoothed power spectral density of
an SDMA signal depends on the mother wavelet and the statistical behavior of the information
scquence. A procedure for pre-shaping the autocorrclation funetion of the information scquence is

also described.

1




channel -1 ... 077 hZy b2y b, b4

channel 0 ... b7% b5' 03 ol b3
channel -1 ... b;7? byt b9 b b

Figure 4: Information Strcams
3.4.1 Power spectrum

Beginning with the form
v(t) = Rels{t)c™']
which relates the bandpass signal v to the wide-sense stationary lowpass signal s, the autocorrelation

‘furction of » may be expressed as
Oue(T) = Ref[gy(T)e™e7]

wliere ¢,, Is the autocorrelation function of the equivalent lowpass signal s. The TFourier transform

of &, yiclds the desired expression for the power spectral density €., in the form

i
P (w)= "[d’sa(“) W)+ ¢sa("*~' - Wc_)]

2
where &,, is the power density spectrum of s. Thus it suffices 10 determine the autocorrelation
furction and the power spectral density of the equivalent Jowpass signal s.

Iirst consider the digital modulation methods for which s is represented in the general form

s(t) =) b Wa(t)

m,n

h

where b7 represents the o'l real- or complex-valued information symbol in t.e mth channel (sce
Figure 4) and W is a mother wavelet. The set {W7 | 27™/?W(% - n);n,m € Z} constitutcs an
orthonorinal wavelet set.

The autocorrelation function of s is

d(t+rity = %5[8'(1)3('“’)]
] ’ t ' L+T
- 1 Efpn* o™ 10-m/ 2y _ ~m gl ot
3 X ek —apmrw Ly ()

m/ n’ mn

12




Assume that the sequence of information svmbols U, is wide sense stationary with autocorreiation

fanction
1
outmin) = SEBLT B ()
Then (6) tan be cxpressed as
; ] a~(m’'4+m T t
o+ Tity= Y ou(m = min = )2 A (o (%)

m’,n‘mn
Imposing the requircment ¢;,(m:n) = 0 for m # 0 (i.c., that the information streams from different

users arc uncorrelated) simplifies the analysis. Then (&) becomes:

Gt + 1)
= ”";“n 27 0(0: 11')!1f-(’ -2".:”‘7; )W(’ N 22':nn' _ 2"‘n)
The summation in (9), namely,
2 W 2yt r o 2o,y

is periodic in the t variable with period 2™ in the channel 1. But ¢(t 4 r; 1) is generally not periodic
{if it is, the process is called cyclostationary). Such a process having multiple periodicities is called
a pseudo-cyclustalionary process.

In order to compute the power spectral density of a psendo-cyclostationary precess, the depen-
dence of ¢,,(t + 7:t) on the t variable must be elimninated. This can be accomplished simply by

averaging ¢,,(t + v;t) over a period within the different channels. T'hus

bes(T)
2™ /2 1 - zm _gmt _ am

= 3 ¢,i(0;n')2""2‘”/ W L LT 2,,." < 2yt

n’,mn -2m/2 2" 2

2 /2 t—‘2 n - 2"n' - 2Mn

= W(0;n)2° 2™ / — W ——————— ) dt

2 ¢ ( ﬂ Z 2"‘/2 '2m ) ( '2m )
- Z $u(0;n )2‘"‘2""2/ I e w220 g
= " 2m 2-gmn om om

> t {47 -2"n

- w2 [ we w2 d 10

3 ouloin) W (10)

13




The Fourier transform of the relation in (10) vields the power spectral density of s in the forin

@, (w) = F(ou(T)

{1

3 eul0rn)2 e A 27w )

n’,m

3 S0 e T (2 (11)

n'om

i

where W is the Fourier transform of W. Defining
b,(w) = Y b0 n)e
the result in {11) can be expressed as
o) = 3 02V (")) (12)
Defining S(w) = &,.(w)| W (w)i? allows Fquation (12) to be further simplified to
b,,w) =) S(2"w) (13)

This result illustrates the dependence of the power spectral density of s on the spectral characteristics
of the mother wavelet 1" and the infurmation sequence {02, }. That is. the spectral characieristics
of ~ can be controlled by design of the mother wavelet W and by design of the autocorrelation
characteristics of the information scquence.

3.4.2 Autocorrelation

Since the spectrum of SDMA signal depends on the autocorrelation of information sequence, it is

interesting to consider shaping of the autocorrelation.
Cl~im 3.1 Suppose a randorn scquence
hoy by bo b U

is ride-sense stationary with

E[bmbn] = { ¢(0) when mm = n

0 otherunse

11




Feooomal vedues A‘o, A‘], kg, . k‘\',\,, drﬁnc a nNew sequence

-2 41 o q ¢

by
9 = koby + kibigy + kobiyo + ...+ ko bian -y
Then (b} can be recovered from {9:} by knowing consecutive initial N — 1 bi’s and the autocorrclation

{¢;} of the sequence {q;} is given by

(0] l’ ko ki ko knoz knoy | [ ko ]

¢l |- ki ko kg kn-1r O ky

2l | =0 ks ks ky ... 0 0 ks (14)
L &l - 1] | [ kv 00 L RNt

and _—

&alk] = 6K

bk =0 fork>N

AL, i~ -

The proof is omitted here.

This -laim gives a method to design sequences with desired antocorrelations from ]} by select-

ing different kg, ..., kn-1. The matrix equation (14) can also be written as

- 1~1r
[ ko ko ky k2 kn-2 kn-i &,[0)
ky . ky k2 ka kn-y 0O ?,(1]
ky | = #0) ky kg kg 0 0 ¢qi2] (15)
| ket | [ k- 00 I L&y -1]

So, conversely, if $4[0], @4[1],....#g[N — 1] are given, ko, k1, kz,...,kn-1 can be ol ained itera-

tively as follows.

1. Initial values of ko to ky._; - re chosen. :

15



2. These are used in the right sidc of (15), vielding

r . 1 -1
ko [ ko ky ke oo knog kno i $ql0} 1
IC; : k] ]\‘2 k3 SN k/\'—] 0 Q)q[l}
ky |= #(0) k2 ks ky ... 0 0 @q(2]

L k"\-'_l J 1 k‘.\"_l 0 0 P < P ] t- (pq[‘\f - 1] ]

3. The squared distance between {k} and {k'} is calculated.
N-1
¢ = E(kn — ke )?
n=0
4. If ¢ is less than a pre-established tolerance, ko, ky,....kx_1 is the answer. Otherwise, let
ko = ko ky = K, ... kn_y = k%y_q. and return to step (2). This algorithm is 10t gnaranteed

to converge.

Note that there are many equations that can be employed instead of (15).

3.4.3 Design of the power spectrum

In this section, the performance of the SDMA scheme against jamming or cxploitation attempts
is discussed. Since the spectrum of the SDMA signal is dependent on the wavelet selected, one
question arises naturaily: “Does there exist a wavelet that causes the spectrum of the SDMA signal
to look like that of white noise?”. This is equivalent to the requirement that &(w) = 3., S(27w)
is constant within a fairly wide frequency band. This requirement is vague since the scalars which
m selects are unknown and the definition of “fairly wide” is vague. It is useful to discuss a rclated
equation that gives some insights,

Z §(2™w) = constant (16)
mez

Note that m takes on all integer values in this equation. Defining g(r) = §5(2%), (16) can be further

written as

Z S(2™w) = Z g(log,w + m)

me’ meZ

16




G(z) = Z g(x + m)
meZ
Hence equation (16) implies G is constant for all real z. Because of the periodicity of G, it can be

expanded in a Fourier scries,

(;(’B) - Z cuc'bnnr
n€l
The coeflicients are given by

1/2 1/2

G(z)e—znnr dz = / Z g(z + m)e~2mnx dz
-1/2 pez,

/Re'z"""‘g(x)dz = §(27n)

il

n
-1/2

where § is the Fourier transform of g. Hence,

G(z) = Z g{2mn)e¥mne

nel
The condition g(2rm) =0 or f3 5(2¥)e~*“?¥"™ dw = 0 for m # 0 is necessary and sufficient for G to

be constant, hence is necessary for , S(2™w) 1o be equal to a constant.
y meL 9

3.5 Bandlimited orthogonal wavelet bases

The problem of channel crosstalk (intersymbol interference) that arises in the presence of asyn-
chronous transmitter operation and propagation delay was mentioned above. One way to combat
this problem is to place different transmitters” signals in disjoint frequency bands. 'Lhis section
derives “milti-band” wavelel bases whose clements at different scales occupy disjoint bands in the
frequency domnain.

One such basis is generated by the (frequency domain) mother wavelet

Wi(w) = 1 7<jw|<2n (17)
0 otherwise

With ag = 2 and bg = 1, this wavelet is easily shown to generate an orthonormal basis of 12 [5). This
basis gives insight about how to construct other bandlimited wavclet bascs in which the dilations of
the mother wavclet W do not overlap in the frequency domain.

In what follows, the connected components of the support of W will be called “bands”. The

wavelet defined in (17) is thus a “two-band” wavelet. The following sections describe the construction

of *n-band” orthonormal wavelet bases.

17




3.5.1 Design of n-band orthogonal sets

Suppose the support 8o of W is the union of n disjoint intervals

50 = [80, Sx] U{Sz,s;;] U .o -U[Sn-—l y Sn]

Then the support of Wk is
S = [302'”‘,312""]U{322"",332‘"‘]U. . .U[sn_12‘m,sn2'"‘}

If the measnre of S, () S, is zero for all non-equal integers m and m’, Sy is called an orthogonal

support. lence, if the support of W is orthogonal, then
n n'\ _ ] vn wn’\ _ ’
<Wm,Wm,> = 2—;<Wm, Wm,> =0 for all m # m'.

In order that the time-shifted and dilated replicates W2 of W form an orthonormal set in L?,
it remains to assure that W, and W,’,‘l', are orthogonal for n # n’ and all m. This is simplified by
the obscrvation that

(VV:I. H,-u') - (WJ‘, wy(;l’)

m

‘I'hus one must only verify that the time-shifted replicates of W are orthogonal at 2 single scale. The

following two theorems describe how the support Sp of 'y can be selected lo ensurc orthogonality.

Theorem 3.1 Consider real numbers 0 < cg < 61 < ¢3 < ... < €y < €q = 2¢9 (07 0> co > ¢y >

€3> ...> Cney > € = 2¢cp). Then
[co, 2¢0] = [co, 1) ler, 2] Ul ea) | - Jlen-1,2¢0]
Let py....,pn € Z and dilate cach sub-interval [cj.¢;41] by 27% to forin a sel

(02”127} le127%, €227 ] | - - - Ulen-1277, 2002"]

[30, 31) U[sz, s3) U . 'U[32m $2n-1)

Su

)

Then 8y is orthogonal.

Theorem 3.2 Suppose a support So is orthogonal. Then So can be generated by the method mentioned

in Theorem 3.1 when paramelers are properly chosen and possibly some subintervals are deleted.

18




The proof of these theorems are given in [28].
Suppose the support of the mother wavelet W is orthogonal. Then {W} will become an

orthogonal wavelet sct if and only if W alse meets
(W WeY=0forn#n'sn,n'eZ (18)

This is equivalent to

=]
!

(Wg W'y

/ W(t - n)W*(t - ') di
R

i

7 / ¢TI (W)W (w) dw
+

2n

!

/ V=W ()2 do (19)
for all n # n'. With k = n — n’ # 0, this expression becomes
/ R ()P dw = 0 (20)
K

for any non-zero integer k. Some solutions of this equation are discussed below.

3.5.2 Some bases

Suppose W is the Vourier transform of the mother wavelet W and its support on the fre uency
pp PF q )

domain is symmetric with positive part is

V= [co'Z”‘ \ Cﬂp’] U[Cﬂp’ . cf)”‘] U .. 'U[C"" i anpn}

where 0 < ¢g < ¢; < €2 < ... < ¢, = 2¢p and py,pz,..., P, are integers. Also suppose that the
amplitude of W equals 1 in V and that the phase is 0. Then the left side of (20) can be calculated

as follows:
A ¢RW ()2 dw

~co2P2 1 29 -c1p2 3272 ~Cn-y2Pn cn2Pn &
T T [ [T [ [ b
- LYig ~-c2m 22 —cn2n Cn—1 2P0
¢ 2 €3 20e cn2Pn

= 2 + +...+/ ) cos(kw) dw

co2¥1 cy P2 n~12Pn

2
= I{- sin(co2” k) + sin(c; 27 k) — sin(€12P%k) + sin(c,272k) —

oo = sin(eu-12P"k) + sin(ca27°k)} = 0 (21)

19




This equation is equivalent 1o the satisfaction of the following equation for any non-zero intege: k-

—sin(co2P k) + sin(e 2P k) - sin(e12P2k) + sin(e,2P2k) ~

oo~ sin(€n-127k) + sin(ca2”"k) = 0 (22)

If €g2P, €271, ¢y2P2, 272, ..., €n1 2P, and ¢,2P" satisfy (22), then AM¢y2P7, Mc,2”1, Mcy 202,
Mc2P2, ., Mc,127", and Mec,, 27" will also satisfy (22) for any natural number M. So there
exists a supporl of a “lowest” level, which will be called the mother support. In other words, if the

end points of the support
V = {c2%1, c12”1] U[c12”’,cz2”’] U . .U[cn_ﬂ”", €, 2P
satisfy (22) and the end points of the support
Var = (02 M, 127 (M (1272 /M, 227 (M (] . Jlen-12P" /M, cn 27" /M
do not meet (22) for any natural number M, then V is the mother support.
Example 3.1 :

Equation (22) is difficult to solve explicitly because it is nonlinear in several variables. 1t can
be simplified by considering the special situation where the support consists of only two symietric
intervals; i.e., the support is [-2¢o27, ~cp2P'] | J[co2"1,2¢02P*) (co > 0). Denoting a = co2P1, (22)
becomes

—sin{ak) + sin(2ak) = 0

or
sin(ak){2 cos(ak) - 1} = 0 (23)
The only valid solution of (23) is ¢ = mn for m € N (the other solution ¢ = 27m £ 7/3 will not
salisfy (23) for any non-zero integer k).
Hence, the support is [—2ma, —mr]U{mr, 2mr], the mother support is [—2r, —7) U[r,27). An
orthogonal wavelet basis can be constructed whose mother wavelet is

W(u):{ 1 if 7 < |w| <27 (21)

0 otherwise
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Example 3.2

Consider the four-band case which is symmetric in the frequency domain and which has unit energy.

The cut points cg, ¢y and dilation p should meet the following condition
—sin{cok) + sin(cyk) - sin(e, 2Pk} + sin(2¢g2Pk) = 0

The above equation can be decomposed into two equations (with loss of some solutions)

sin{2cg2?k) — sin(cok) = 0
sin{¢;27k) — sin(e1k) = 0

Which can be solved simultaneously to yicid
2r
Cy = 27;1_—11’
=7

Some mother wavelets are given below:

I.Yorp=0,c0=7m.c;=nm

Wi(w) = { 1 Jw)e([m,2r)

0 otherwise

2. Jorp=1l,¢p= %r,cl =7

wix
=
SN’

0 otherwisc

W(w):{ 1wl € (Bx,m)U2r,

3. lorp=2,¢c0= %w,c, =7

W(w):{ I jwle [3x, m)idr, L)

0 otherwisc
(sec [16)).

Other morc sophisticated multi-band wavelet symbol constructions developed nnder this project

are presented in [28].
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4 Research Results: Frequency Hopping Signal Demodulation

Research in this area was focused on demodulation of intercepted frequency hopping spread spoc-
trum signals in an uncluttered or lightly cluttered environment. Several slow frequency hopping
signals (digital voice, text, analog audio, etc.) were generated to form a modest library of test
data. This collection includes both analog and digital data and various suppressed carrier baseband
modulation techniques are represented. Software for time windowed fast Fourier transform (FI'T)
and wavelet transform (W'L') processing of spread spectrum data was written. A simple Viterbi-
type algorithm that operates on raw time-frequency (periodogram) or time-scale (scaleogram) data
and produces tracks of frcquency liopping signals through time-frequency or time-scale space. This
software was used to support empirical evaluation of WT measurements as the basis for estimating
the spreading sequence of a single slow frequency hopping signal in a noise-free and clutter-free
environment. Several wavelcts were testcd, and it became evident that the wavelets that provided
scaleogram ineasurements that led to the best spreading sequence estimates wcre essentially sinu-
soidal. Indecd, the fact that frequency hopping signals arc carried by sinusoidal waveforms seems to
make Fourier analysis particularly well suited to this problem. lHowever, in experiments, a hybrid
algorithm using fixed-resolution FFT processing and multiresolution WT processing provided better
spreading sequence estimates than cither ¥¥FT or WT processing alone. The WT component of the
algorithm provided better localization of the hopping times of the signal than the fixed resolution
FF'I' component (with rclatively long integration period chosen to provide accurate {rcquency mea-
surergents) than either WT or FFT processing alonc. In addition, the efficicncy of fast algorithms
for computation of wavelet transform values at dyadically arranged points in the phase plane pro-
vided a fast approach to “focusing in” on the true hopping times and frequencics. Some additional
experiments with lightly cluttered communication environments were undertaken.

Among the main reasons for the use of frequency hopping spread spectrum communication
systems is their robustness with respect to detection and jamming (20). Typical slow frequency
hopping signals consist of an information signal of relatively small bandwidth modulating a carrier
signal having piccewisc-constant frequency that varies (“hops”) within a band much larger than

that of the inforination signal (figure 5). The spreading function is known to intended receivers,
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1300 F

Time (ms)

Figure 5: A typical spreading function for a slow frequency hopping communication signal. In this
context. the adjective “slow” means the period between hops (which may be fixed or variable) is

much longer than the duration of a symbol representing a single binary digit.

but unknown to unintended receivers who may wish to demodulate or jam the transmission. This
paper prescnts preliminary results of rescarch into techniques for estimating the spreading function
of an unknown frequency hopping transmission using only received (intercepted) data. Since such
functions arc characterized by the times and frequencies associated with the hops, techniques are
sought to accurately estimate these parameters. Good cstimates of the spreading function are

directly useful in demodulation of such signals and may also be useful in jamming them.

4.1 Time-frequency techniques

The analysis tools used in this work were the short-time Fouricr transform (STTFT) and the wavelet
transform (W'L'). Other approaches for analysis of signals with time-varying characteristics, such as
the Wigner-Ville and related time-frequency distributions [9] may also be applicable to this problem.

These were not used in the work presented here, however.

4.1.1 The STFT

As a signal analysis tool, the primary utility of the Fourier transform is decomposition of a finite-
energy signal into individual frequency components. Its value in analysis of signals with time

varying characteristics, such as frequency hopping signals, is limited because information about
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when the various {requency components are present in a signal is embedded in the phase of its
Fourier transform in a way that is not easy to interpret. The magnitude of the Fourier transform
of a frequency hopping signal, for example, contains no information about when the hops occur.

The STFT or time-windowed Fourier transform of a finite-encrgy signal f: 2 — X is a function
F:R? - R defined by

F(t,w) = Af(‘r)w(f ~ e dr

In this expression, w is a bounded function, generally even and with bounded support, called
a window. In general, window selection is based on numerous criteria [15]. In the context of
frequency hopping signal analysis, the primary tradeofl is in selecting the time duration of the
window. Windows of short duration allow precisc temporal localization of hops at the expense

of frequency resolution. Analysis using Jong windows sacrifices temporal resolution but improves

frequency resolution.

4.1.2 The WT

The wavelet transforin of a contihuous-ltime finite cnergy signal f with respect to an analyzing

wavelel ¢ has values

Wi(a,b) = »ﬁf"f(t)g' (5—;—6) dt

In this expression, g* denotes the complex conjugate of g, a > 0 is called the dilation or scale
parameter, and b € R is the time shift parameter.

The wavclet transform has been shown to be of particular value in detecting and temporally
localizing discontinuities and other sudden changes in signals [1, 22]. The ability of the WT using
any given wavelet to resolve narrowband signals that are closely spaced in frequency is better at iow
frequencies than higher frequencies. This characteristic is ideally suited for certain applications in
which frequency resolution requirements diminish in proportion to the center frequency of the band
being analyzed (e.g., “constant-Q” settings). It is not desirable for analysis of frequency hopping

signals, however, because the need for frequency resolution is nniform across a wide bandwidth.
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Read mnput
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Figure 6: Flow diagram of a hybrid algorithm for estimating the spreading function of an intercepted

frequency hopping signal.
4.2 An estimation algorithm

The characteristics just discussed suggest a hybrid scheme for spreading function estimation in
which WT analysis is used to estimatc the hopping times and STFT analysis is used to cstimate
the frequencies of the signal segments. Such an algorithm is depicted in figure 6.

At the first stage, the WT of a segment of the intercepted data is computed digitally. The
discrete wavelet transforin used at this stage is dyadic and provides one output value wg; at the
coarsest scale ag. It provides two output values w;,; and w; 2 at the next finer scale a; = 27 1g,.
At scale ¢, = 27"qg, it yields 2" values wy g, ..., Wa 2n, Tesulting in a dyadic tree of output values

ending at the finest scale ay = 2”Vag. I'he occurrence of a hop within the segment is determined by
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comnparing the sequences |woyl, jwyyf, ... Jwnal and [weal, jawy o, . lwxn onl. These sequences may
be interpreted as crude local spectral cstimates of the signal near the leading and trailing edges
of the segment, respectively. Thus, if a hop occurs within the segment, the change in frequency
structure of the signal will be reflected in the sequences. If a hop is indicated, the outputs forin the
finer scales arc used to estimate the precise time(s) of the hop(s).

The next stage of the algorithm processes a segment of data bounded in time by two hops, as
detected in the first stage of the algorithm, using a STI'T with a window whose length precisely
matches that of the segment. This is implemented by a zero-padded FFT (18]. The spectral estimate

obtained is used to estimate the frequency of the carrier between hops.

4.3 Simulation results

A digitized frequency hopping signal with the following characteristics was produced:
e BPSK baseband modulation
o Bit rate of 9600 bps
¢ Hopping ratc varying randomly between 50 and 250 ms
e Smallest frequency hop of 20 Kz
e No noise or interfering signals

Because the true spreading function of this signal was known, it was possible to reconstruct the
bascband signal from the frequency hopping signal simulating the reconstruction possible under idcal
conditions at an intended recciver. The signal-to-noise ratio (SNR) obtained in this reconstruciion
was approximately 25 dB.

The hybrid algorithm described above was used 10 estimate the spreading function of the sim-
ulated signal. The parameters of the algorithin were chosen based on the assumption that the
shortest time between hops would be no less than 25ms and that the sinallest frequency hop would
be no less than 10 KHz. Otherwise, the algorithm used no specific @ priori knowledge about the
signal. ‘The baseband signal was reconstructed using the estimated spreading function with a SNR

of approximately 14 dB.
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A similar spreading function cstimation algorithin using STFT rather than WT to estimnate
the hopping times was implemeuted and tun on the same data. It was found to be much more
computationally eflicient, but the esti- .ated hopping times were not as accurate as those obtained

using WT. This loss of accuracy reduced the reconstruction SNR to approximately 8 dB.

4.4 Demodulation versus jamming

In principle, accurate estimation of the spreading function of a frequency hopping signal can be
useful in jamming as well as in demodulation. For jamming applications, a hop must be detected
and the frequency of the new segment estinated essentially imuiediately in order for the jamining
transmitter to switch to the new frequency before the next hop. Thus, estimation algorithims must
be causal and very fast for this application. On the other hand, the accuracy of the estimate mmay
rot be crucial. Just having a general idea where in the phase plane the signal is concentrated will
aliow much more efficient use of jammer energy than constant ja:nming of a broad {rcquency band.

Tor demodulation of an intercepted signal neither causality nor fast algorithm executicn may be
necessary. Latencies of seconds or even minutes may have little effect on the utility of the spreading

furction estimate ir demodulation. However, accuracy of the estimate in this application is crucial.

5 Publications

Results from this research effort have been pubhished as follows.

5.1 Journal and conference proceedings papers
The following papers describing results obtained under this effort were published or submitted for

review and possible publication:

J. N. Bhoui and D. Cochran, “Multiscale Time-I'requency 'lechniques for Spread Spectrum De-
modulation and Jamming,” Proccedings of the I wenty- Sirth Asilomar Conference on Signals,

Systems, und Computers, October 1992.

2. ). Cochran and C. Wei, “Scale Based Coding of Comrnunication Signals.” Proceedings of

the IFEL-SP International Symposivin on Time-Frequency and Time-Scale Analysis, October
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tang,

J.D. Cochran and S. Enserink, “Use of Cyclostationary leatures in Frequency Hopping Signal

Segment Association,” Proceedings of the Workshop on Cyelostationary Signals, August 1992.

1. C. Waor and D. Cochran, “Construction of Discrete Orthogonal Wavelet Bases,” Record of the

IEEE International Symposium on Informnation Theory, January 1993.

<

. 1. Cochran and C. Wei, “Scale-Division Multiple Access -- Part I: Wavelet Coding and Spread

Spectrum,” Submitied to IEEFE Transactions on Information Theory.

5.2 Theses
The following thesis describing results obtained under this effort was prepared and defended:

o N. Bhouri, Application of Multiresolution Time-Frequency Techniques to Spread Spectrum De-

modulation end Jarnming, M.S. Thesis, Arizona State University, December 1991.
An additional thesis is in preparation and is expected to be defended in May, 1993:

o C. Wei, Scale-Division Multiple Access, M.S. Thesis, Arizona State University, May 1993 (in
preparation).

6 TParticipating Personnel

Personnel contributing to this research effort were:
1. D. Cochran, Principal Investigator
2. C. Wei, Research Assistant
3. N. Bhouri, Research Assistant
4. D. Sinno, Research Assistant

The rescarch component of the following graduate degree was undertaken as part of this effort:

1. N. Bhouri, Master of Science in Flectrical Enginecring, December 1991, Thesis: Application of

Muitiresolution Time-lrequency Techniques to Spfead Spéct}t_tiﬁiDémoddIa!ibn and Jamming
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- C. Wei, Master of Scienee in Electrical Engineering, 1o eomplete May 1993, Thesis: Scalc-

Division Multiple Access

7 Research Intaractions

'T'he following research interactions were related to this project:

8

1. An oral presentation entitled “Application of Multiscale Processing to Characterize Frequency

Hlopping Spread Spectrum Signals” was prepared by . Cochran and N. Bhouri presented by
D. Cochran at the AFOSR/AFIT Symposium on Application of Wavelets to Signal Processing
at Wright-Patterson AFB in March 1991.

. D. Cochran attended a series of meetings at Wright Laboratories in October 1991 to dis

cuss this project and related topics with the AFOSR Program Manager (J. Sjogren), Ai
Force Laboratory personnel (J. Stephens, L. Gutman, J. Tsui), and AFIT Faculty (M. Oxley
G. Warhola). In particulaf, a progress briefing on this project was presented to the Prograrn:

Manager at this time.

2 D. Cochran prescnted an invited lecture in the AVIT/AFOSR Distinguished Lecture Serie

at the Air Force Institute of Teé¢hnology in September 1992. During this visit to Wright
Patterson AFB, he collaborated extensively with AFIT faculty (M. Oxley, 13. Suter) and me:

with Wright Laboratories personnel.

4. D. Cochran prescnted talks on this project at (a) the University of Arizona lectrical Engincer-

ing Department Colloquium [35 attendecs) in November 1990, (b) the I[EF * Signal Processing’
and Communications Society Phoenix Chapter Meeting [48 attendees] in icbruary 1991, {c;
the Motorola Government Electronics Group éigna] Processing Seminar Series (13 attendees)
in April 1991, and (d) MIT Research Laboratory for Electronics Signal Processing_Group

Seminar {12 attendecs] in February 1992.

Inventions' and Patents ’

No inveutions or patent disclosures resulted from this research program.
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9 Additional Information

Work on the most promising aspects of this project is continuing under grant No. '4.19620-93-1-0051.

30




References

[1] M. Basseville, “Detection of abrupt changes in signal processing.” In Wavelcts: Time-Irequency
Methods and Phase Space Mcthods, J.M. Combes, A. Grossman, and Ph. Tchamitchanian, Eds.,

pp. 99-101, Springer-Verlag, 1989. Sece also the references given in this note.

(2] N.H. Bhouri. Application of Multiresolution Time-Frequency Technigques to Spread Spectrum

Demodulation and Jamming. M.S. Thesis, Arizona State University, 1991.

[3] N.M. Bhouri and D. Cochran, “Multiresolution time-frequency techniques for spread spectrum
demodulation and jamming,” Proceedings of the 26th Asilomar Conference on Signals, Systems,

and Computers, vol. 1, pp. 105-107, October 1992.

[4] P.J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” [ELE Trans-
actions On Cominunications, vol. COM-31, no. 4, pp. 532- 540, April 1983.

[5] D. Cochran, Notes on Mathematical Signal Analysis. Telecommunications Rescarch Center

Report No. TRC-DC-9201, Arizona State Unijversity, 1992.

‘61 1). Cochran and N. Bhouri, “Application of multiscale processing to characterize frequency
liopping spread spectrum signals,” AFOSR/AFIT Workshop on Wavclet Applications in Signal

Processing, March 1991.

7} D. Cochran, R. Hedges, R. Martin. J. Quirin, and C. Wei Lectures on Time- Frequency Sig-
nal Analysis. Telecommunications Research Center Report No. TRC-DC-9301 Arizona State

University, 1993,

i$! ). Cochran and C. Wei, “Scale based coding of digital communication signals,” Procecdings of

the 1LEE-SP International Symposium on Time-Frequency and Time-Scalc Analysis, October

1992.

(9] L. Cohen, “Time-{requency distributions: A review.” Proceedings of the IEEE, vol. 77(7), pp-

941-981, July 198%.

[10] 1. Daubechies, len Lectures on Wavelets. SIAM Press, 1992.

31




( N . :
[11] 1. Daubechies, “The wavelet transform, time-frequency localization and signal analysis.” IFLL

Transactions on Information Theory, vol. 1T-36(5), pp. 961-1005, September 1990

9. . N . .
{12] 1. Daubechies, “Orthonormal bases of compactly supported wavelets,” Cominunications on

Pure and Applied Mathematics, vol. XLI, pp. 909- 996, 1988.

, . , .
[13] 1. Daubechies, A. Grossmann, and Y. Meyer, “Painless nonorthogonal expansions,” J. Math.

Phys. vol. 27, no. 5, pp. 1271-1283, 1986.
(14) G.1. Folland, Rcal Analysis: Modcrn Techniques and Their Applications. Wiley, 1984.

[ arrie ; R H '
[15] {. harris, “On the use of windows for harmonic analysis with the discrete Fourier transform.”

Proceedings of the 1EEE, vol. 66(1), January 1978.

16] S.G. Mallat, Multiresolution Representations and Wavele!s. Ph.D. Thesis, University of Penn-

sylvania, August 1988.

171 D.L. Nicholson, Spread Spectrum Signal Design, LPE € AJ Systems. Engineering Research

Associates, Inc., 1988.

fj%) A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hail, 1989.

19 ANV Oppenheim and G.W. Wornell, “Representation synthesis and processing of self similar

signals.” AFIT/A FOSR Workshop on Wavelet Applications in Signal Processing, March 1991,

120) R.A. Pickholtz, D.L. Schilling, and L. B. Milstein, “Theory of spread spectrum commuunications

a tutorial,” IEEE Transactions on Communications, vol. COM-30(5). pp- 359-884, May 1082

21} J.G. Proakis, Digital Communicalions. McGraw-Hill Book Company, 1983.

» JEEE Signal Processing Magazinc.

'22) 0. Rioul and M. Vetterli, “Wavelets and signal processing,

vol. 8(4), pp- 14-38, October 1991.

(23] W. Rudin. Real and Complez Analysis, McGraw-Hill, 1974.

. . " ~g° 1 773 . C m-
{24] R.A Scholtz, “The origins of spread spectrum cominunications, JEEL Transactions on L0 {

munications, vol. COM-30(5), pp- 822-854, May 1982.

32




[25) B.W. Suter and M. E. Oxley, “On variable overlapped windows and weighted orthonormal

bases,” to appear in: IEEE Trans. on Signal Processing.

{26] ¥'.B. Tuteur, “Wavelet transformations in signal detcction,” In Wavelcts: Time-JFrequency
Methods and Phase Space Methods, J.M. Combes, A. Grossman, and Ph. Tchamitchanian,

Eds., pp. 132-138, Springer-Verlag, 1989.

(27] C. Wei and D. Cochran, “Construction of discrete orthogonal wavclet bases,” Procecedings of

the IEEE International Sy.aposium on Information Iheory, pp. 330, January 1993

[28) C. Wei. Scale-Division Multiple Access, M.S. Thesis, Arizona State University, May 1993 {in
preparation).
[29] G.W. Wornell, “Communication over fractal channels,” Proceedings of the IELE Intcrnational

Conference on Acoustics, Specch, and Signal Processing, vol. 3, pp. 1945-1948, May 1991.

[30) G.W. Wornell, Synthesis, Analysis, and Proccssing of lractal Signals. Ph.D Thesis, Mas-

sachusetts Institute of Techrology, 1991,

[31) G.W. Wornell and A.V. Oppenhein, “Wavelet-Bascd representations for a class of self-similar
signals with application to fractal modulation,” IEEE Transactions on Information Thcory,

vol. 1T-38(2), pp. 785-800, March 1992.

33




